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CHIMERAS

Frederic Bisshopp

The propagation of nonlinear wave packets and modulated

beams, and other features of nonlinear wave propagation can be

described in terms of several approximate, heuristic theories.

The neoclassical approximation, to be presented here, is repre-

sentative of a style of approximation that includes a number of

the approximations currently in use as special cases or as

limiting cases. It is, in a manner of speaking, the best

approximation of its kind in the sense that it coincides with

the nonlinear wave equation from which it is derived in more

limiting cases than any of the others, and though it too is

heuristic, it is rational, being the first of a sequence of

approximations that converges to a solution if it converges.

Chimeras are the solutions of the equations of the neoclassical

approximation; there are a number of exact ones, to be exhibited

here, that describe phase-shocks, self-focu~ed beams, and

localized wave packets that travel, without change of shape,

at an arbitrary uniform velocity less than one.
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1. The body of a goat.

The search for exact solutions of nonlinear partial differ-

ential equations is a difficult game, and wins are not often

seen unless you allow the player to choose his problems. This

choosing of problems goes on at many levels. In physics, for

example, and even in the most hopelessly specialized branches

of physics, it is pretty well recognized that the notion of

providing an exact theory that encompases the complete under-

standing of some class of phenomena is the perihelion of vanity.

Instead, it is hoped that a model can be constructed - a model

based on relatively simple principles that by logical inference,

numerical or otherwise, predicts a body of observed results with

a satisfactory degree of accuracy. It can hardly be thought

surprising that a good deal of modern applied mathematics, with

its emphasis on norms, contractions, invariant manifolds, and

asymptotics, should be devoted to the determination of how

satisfactory a given approximation really is and how different

approximations are related to one another. Neither should it

be thought surprising that simplicity of a physical theory is

required, regardless of the complexity of the manipulations, if

very many of us are to agree that we have achieved a deep under-

standing of some phenomenon.

Generally speaking, the choice of a problem or a model is

influenced both by tle nature of the phenomena to be described

and by the mathematical techniques that are known or can be

invented to deal with it. That many physical phenomena appear
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to be described by nonlinear wave equations need not be argued,

and if it is agreed therefore that it makes sense to look for

new techniques to describe properties of solutions of nonlinear

wave equations, then no more elaborate apology need be offered

for considering

(1.1) Ott - V2 + o3 = 0

as an illustrative example. This equation (the (04)4 theory)

is one of the most popular equations of theoretical physics -

iL packs Lorentz invariance, nonlinearity of the right kind for

it to be a wave equation, phase velocities greater than one and

group velocities less than one, and reduction to a non-dispersive

equation in the weak field limit, all in less than a square inch

of the printed page. Its simplicity is evidently measured by

the small number of sy.Abols it takes to write it down. There

is one more simplifying feature of (1.1) worthy of note - it is

derivable from a stationary principle. In the notation to be

used throughout this paper, it is the Euler equation of

(1.2) 6J{½ gijOiOj _ 1 04) d4x 4 0

where gij = glj = 1 if i=j=0, --1 if i-j#0, and -0 otherwise,

a comma followed by one or more subscripts denotes differentia-

tion with respect to the corresponding coordinates (xk) - (t,x)

(k=0,1,2 and 3), and the summation over repeated indices is

implied.
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If simplicity of a theory that encompases specified

properties such as those listed above of the (0 )4 theory is

to be measured by the number of symbols required to write it,

then (1.1) is undoubtedly the simplest theory of its kind. On

the other hand if theories are thought to become simpler as the

number of their easily found exact solutions that mimic physical

phenomena increases, then

g iJ(a 2 pi) = 0

(1.3)

9 ' a g= 13 ip .- a a2 )a

is a far simpler theory of the same kind. As we shall see in

the next section (1.3) is also very closely related to (1.2).
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2. A serpent's tail.

By the counting of symbols

(2.1) 6J510,,i )d4x = 0

is simpler, though considerably more general than (1.2), and

it is usually quite a bit more complicated. A number of the

properties of (1.2) can be stated in terms of it, however, and

that will be done wherever it is easy. Nevertheless, this

section is devoted primarily to an exploration of the relation

of (1.3) to (1.2).

There is one well-known class of exact solutions of (1.2):

the plane waves defined by the ansatz -- f(kix i) where ki is

a constant four-vector. The resulting ordinary differential

equation for f has the energy integral

(2.2) 1 k 2kf + 1 f4

where the prime denotes differentiation of f with respect to

its argument. From (2.2) we can determine f by a quadrature,

evaluate the action

(2.3) J(kiki,E) S f(2kiki(E - 1- f 4 )) df - 2lry(kiki)h E3 / 4

where y - (.);(- T)!/ir(r) T 1.1128 ,

and define the dispersion relation

(2.4) JE W 27t or kiki - 2E
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The condition (2.4) that the period of f shall be 2w is required

if the components ki are to be the frequency and the wave number

vector, by the usual convention for plane waves. Similar

features of (2.1) can be isolated whenever the same ansatz leads

to an ordinary differential equation that has periodic solutions,

and for present purposes a sufficiently sharp definition of a

nonlinear (or linear) wave equation is: one that has plane wave

solutions.

Now let us suppose that (2.1) is a nonlinear wave equation.

Then we may ask if there is a class of approximate solutions

that are close to plane waves - close in a sense not to be made

precise just yet, for it is a difference in the notions of

closeness that distinguishes the classical approximation from the
I0

neoclassical approximation. Both terms will be defined presently.

In either approximation we wish to represent the function O(xk)

which is to be a solution of (2.1) in such manner as to display

explicitly a phase P(x k) that takes on the values kixi if the

solution is a plane wave. The familiar phase-amplitude repre-

sentation, (x k) - A(xk)sin P(x ), though perfectly faithful

(any * can be so represented), leads when substituted in (2.1)

to equations that are not particularly illuminating unless the

Euler equation of (2.1) happens to be linear. Later we shall

return to the phase-amplitude representation (slightly modified)

with the equations of the neoclassical approximation to govern

it, but first let us engage in a bit of circumlocution based on

the more general representation
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(2.5) "1 k)= f(t. xk ) when e - P(xk)

where f is a 2w-periodic function of its first argument.

Representation theorems.

Equation (2.5), by the way it was written, was meant to

imply that we shall view the functions Kxk)(of four variables)

as projections of the functions f(e,xk) (of five variables)

defined by the substitution of P(xk) for e. The question to be

answered by the first representation theorem is whether or not

there is a partial differential equation in the five independent

variables whose solutions when projected are solutions of (2.1).

The hard part of the theorem is to know it is needed - its form

is easy to guess.

Theorem 1: Given any C2 function P(xk), every function f(O,xk)

that is a solution of

r 4(2.6) 6}•fP'ife+f i)d xdO = 0

is projected onto a solution of (2.1) by the substitution

G = P(xk ).

The proof of theorem 1 is embarrassingly easy - the substitution

of f(P(xk),xk) for ,(xk) in the Euler equation of (2.1), the

adoption of the convention that the subscript e denotes differ-

entiation of f with respect to its first argument, the use of

the chain rule for partial differentiation, and the observations
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!* .5 =. ,..4 =.• and . - Pi4 , all conspire to
' i ,i ,i

produce the Euler equation of (2.6). Moreover, the proof is

considerably more general than the theorem. The function f

needn't be a 2w-periodic function of 8 (that and the correspond-

ing choice of (0,2w) for the domain of the 0-integration in

(2.6) are side conditions that identify P(x k) as the phase of

a wave), the equation for 0 needn't be an Euler equation, 0

and f needn't be scalars, and the number of independent phases

that can be introduced is not limited to one. In short, every

feature of the theorem can be generalized, but we shall find

little use for such generalizations here.

Theorem 1, by nature a statement about projections,

defines 0 uniquely given P and f, and the converse, that f should

be uniquely determined given P and *, may or may not be true

depending on the choice of P. There is always the trivial

representation where O(xk) = f(e,xk) and nothing is said about

evaluating f at e = P(xk). Then f is independent of 6 , f. and

with it P are expunged from (2.6), and (2.1) is recovered

directly. What we should like t- find is a condition, an extra

equation that can be thought of as governing the choice of P,

that allows us to consider nontrivial representations where fe

does not vanish identically - in the argot of applied mathematicians,

a bifurcation condition. Among other things, the second repre-

sentation theorem provides it. Let us suppose that we have a

solution f(6,x k) and that it can be represented as
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(2.7) f(o,xkl = F(e{A N(x k})n

where the e-dependence of F is specified and {An) denotes an

indefinite but countable number of parameters. The Fourier

representation of f where the e-dependence of F is prescribed

in terms of the trigonometric functions is the most familiar

one of the form (2.7), but for reasons shortly to be seen we

shall not limit (2.7) to that special case. Given F(O;{A n) we

can evaluate

27

(2.8) 2({An},{An,i}'Pi) -- ( .(F'P iF +ZAn.FA )d6n n i ,i f f? ,i n,i A
0

and in terms of it, state the second representation theorem.

Theorem 2: If f(6,xk) is in the class of functions defined by

(2.7) and is a solution of (2.6), then

(2.9) a•Jg({An1,{A nI,P)d 4x = 0

The proof of theorem 2 is by a direct evaluation of the Euler

equation associated with the nth component of the parametric

dependence of F,

2w

(2.10a) (9 Y i A 1 r {)F- F i-e
n n 1'rFJnN 4,i Ann F i

27
-F d Y = dO" f FA+ L4 I d e 0

0l0 ,i
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and by the observation,

2w

(2.10b) tt1T - f 6 4F +F 8 . *1de
0

2v
= JFe (4)e-L4 ) i]+(Fe? ),ide

0

= (,i) ,i -0•

That F should actually depend on 8 and {An} is implicit in (2.7),

and (2.10b) is evidently the necessary condition for bifurca-

tion of the representation (2.5). Now let us see how (2.6) and

(2.9) which appear to define harder problems than (2.1) can be

used to derive the classical and neoclassical approximations.

The classical approximation - perturbation theory.

A great deal of work has already been done on the approxi-

mate solution of wave propagation problems in a limit where the

solution can be thought of as a local oscillation described

parametrically by slowly varying functions of space and time -

the WKBJ approximation, geometrical optics, Whitham's method,

and a host of other coefficient averaging techniques are such

perturbation theoretic approximations. In terms of the repre-

sentation (2.5) a precise definition of slowly varying can be

stated succinctly - the perturbation theories are limited to

the treatment of solutions where

(2.11) lfiI < llP ifell, 0 < £ << 1,
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and• iii denotes the maximum of the absolute value over the

range of values of e. The easiest way to arrive at a formal

asymptotic perturbation theory now is to introduce the rescaling

of the independent variables

(2.12) Xk = exk

and in accord with (2.12), the representations

(2.13) *(xk) = f(e,Xk, ) = F(B,{A (Xk ,')) when e = P(Xk CE)
n C

where f and F are 2w-periodic functions of 0. Then

C•(,ri) =S(f,P,if+ef .i) and

(2.14) 2w

Ir f I6 %,JS=2w 16 FPie+ n,iFAnd

where the comma followed by a subscript now denotes differentia-

tion with respect to x or X , depending on which arguments are

listed in (2.13). In the rescaled variables £ no longer appears

on the right hand side of the equation that corresponds to

(2.11), and the slowly varying property that was assumed of

solutions there reappears in the form of an explicit dependence

of the Euler equations on the fictitious parameter c. A few

comments on how theorems 1 and 2 impinge upon and simplify the

structure of the perturbation theory can now be made:

1) The rescaling (2.12) casts the problem in the form of a

two-scale perturbation theory, a device that has achieved

considerable popularity lately (cf. Cole [1] ), and
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theorems 1 and 2 provide the justification for doing so in

advance.

2) Given a sequence {O(n) (xk )={f(n) (P(n) (xk),xk)) for which

Jif(n+l)-f(n)II . O(CIjf(n)7f(n-l)11) and IP(n+l)-p(n) j=O(jpP(n7_

,(n-l)1) in some region of space and time, it does not follow

that I,(n+l)- I (n)(=0(I,(n)-..(n-l)I) in the same region for the

reason that the zeroes of the functions O(n) are not fixed, but

vary slightly in accord with P(n) (xk). The representation (2.5)

allows the introduction of the norm defined after (2.11) in terms

of which error bounds can be treated (cf. Bisshopp [2]).

3) In the direct treatment of (2.1) by a two-scale method

(where (2.12) and (2.13) are substituted in the Euler equation,

cf. Luke [3]) P(n) is determined at each stage of the approxima-

tion by an integrability condition for f (nl). Theorem 2

replaces the sequence of integrability conditions by a single

bifurcation condition without reference to asymptotics.

In practice the error bounds associated with a sequence of

approximations obtained by successive substitutions in (2.14)

have a more complicated form than has been exhibited in point 2

above. The norm of the error at the nth stage depends on norms

of the errors of the Xk-derivatives at the previous stage,

indicating that it is a singular perturbation theory we have to

deal with. Rather than to proceed further into the rafted pack

of asymptotics, error bounds, and numerous expansions in powers

of things, however, it will be sufficient for present purposes

to outline the consequences of the observation that the

S' * n I - ,• I I
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approximation of lowest order - the classical approximation -

can be isolated by neglecting f i relative to P,if, in (2.6)

and (An,iFA ) relative to P ire in (2.8). Accordingly, we

shall disregard the rescaling of variables (2.12) from here

on and suppress the superscript (0) in the discussion of the

classical approximation.

When f'i is removed from (2.6) the Euler equation

(2.15) ( )4 ) =

is an ordinary differential equation (given P '), and it has

the energy integral

(2.16) H(f'g;P,i) gfe -Sf'Plife) = E(xk)

g J• ef

(provided the Legendre condition gf 0 is satisfied). Fromfe

(2.16) the local waveform f(l;P,i,E) can be obtained by a

quadrature, but it is not necessary to perform that step to

evaluate the action

(2.17) J(P~iE) gdf
H=E

(Note that the local wave is an exact solution of (2.1) when-

ever P is a constant vector ki and E is another constant.)

Since P'i and E are the only parameters of the local waveform

every representation of the form (2.7) has coefficients of the

form {An(Pi,E)}: this and the observation that

L.
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2w

(2.18) 27C•tAn},P ,-) f(P,i,Z)-2-rJi (gf6 Hd e (~D)2r
0

when FPi is removed from (2.8) imply the relations

(2.19) (JP ), "1 0 (transport equation)

and

(2.20) JE = 2w (dispersion relation)

that govern the classical approximation (cf. Whitham [4]). Unlike

geometrical optics where the dispersion relation depends only on

the frequency and the components oZ the wave number vector,

equations (2.19) and (2.20) are coupled when (2.1) has a nonlinear

Euler equation. Since JEE is not zero in general the dispersion

relation can be solved for E(P i) (in principle), and the result

substituted in the transport equation to obtain the second order,

quasilinear partial differential equation

(2.21) Pij(JEP iJEP j-JEEJP iP ') - 0

for P (x k). In the cases that have been encountered in practice

so far (2.21) is not ultrahyperbolic; the qualitative behavior

of its solutions has depended on whether it is elliptic or totally

hyperbolic (of. Courant-Hilbert [5]0. If it is elliptic, initial

value problems where P(x k) and E(x k) are prescribed in a three

dimensional region of space-time can be posed without contradic-

tion, but they are not well-posed, for the solutions are unstable -

minute perturbations of the initial data grow faster than

exponentially to become singularities of the perturbed solution.
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(The spike instability of high intensity laser beams and the

catastrophic self-focussing of laser beams in benzene arg physical

phenomena that appear to be represented by such behavior.) If

(2.21) is totally hyperbolic, there are three-dimensional regions

of space-time where the specification of P(xk) and E(xk) defines

"a well posed (stable) initial value problem, but then there is

"a ubiquitous tendency for the solutions to become multi-valued,

or at least discontinuous if we presume that shocks (shadow

boundaries) are formed. In either case it is predicted that the

development of the solution is such as to bring about the violation

of one or more of the inequalities (2.11) on which the classical

approximation is squarely based. In spite of this, the classical

approximation (when applied to (1.2) for example) has solutions

whose qualitative features reflect many of the effects observed

in laser beam experiments - it would be a shame to discard it just

because it has suicidal tendencies. Perhaps with a little more

analysis ...

The neoclassical approximation - direct methods.

Just as countless eigenvalue problems governed by stationary

principles can be attacked by a direct method (the variational

method), so too can (2.6). There are many ways to formulate a

direct method - one of the easiest ones, though not the most

convenient one for a nonlinear problem, is by harmonic analysis.

Suppose we let

(2.22) f(o,x) - F(eAn))- N(xk) sin nO
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Then, to state the weakest possible converse of theorem 2, if

the Fourier series converges to a C2 function when {An(xk )) andk kn

P(xk) are solutions of (2.9), then f(e,xk) is an odd, periodic

solution of (2.6) and a nontrivial representation of a solution

of (2.1). Of course the Euler equations of (2.9) are the infinite

set of coupled nonlinear partial differential equations

(2.23) (p .i,i - 0

and

A ),"An for n-1,2,...,
n,i' n

and finding their exact solutions is out of the question. Because

of the special properties of the trigonometric functions, however,

(2.22) may be the most convenient form of (2.9) for proving

existence of solutions and such things.

In the case where Pi is the constant vector ki and {An}

is a set of constants we can be sure there is a solution of (2.23) -

the plane wave - determined by equation (2.16). Because of the

representation (2.22), however, (2.23) determines the Fourier

series of the plane wave, and that simply is not the most

convenient way to describe solutions of (2.16) in general.

Furthermore, the one-term approximation, i.e. the phase-amplitude

representation where F(OeA) - A(x k) sin e , is at best approxima-

tion, even for plane waves, when (2.1) is a nonlinear wave equation.

If, however, the one-term Fourier approximation is employed in the

analysis of (1.2) according to (2.23), the result is (1.3) with
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a (3/4)½ A; it is the same result as would be obtained

by applying the quasi-optical approximation to (1.2) (cf.

Akhmanov et al [6]).

An improvement over the one-term Fourier approximation can

be made if we are willing to discard (2.22) in favor of what

might be called anharmonic analysis according to the scheme.

(2.24) f(e,xk) = F(6;{A n},P,i) = F (8;P i) + E A n(xk)F n(8;P i)2

where F1 is the fundamental 2w-periodic, odd solution of (2.16)

(it depends parametrically on Pi, but not on E since J. = 2w

can be solved for E(P i) when JBE#0) and {F n is a complete,

orthogonal set of odd, 2w-periodic functions. Given F1 the

remaining members of the set can be constructed in many ways,

and since the first member depends parametrically on P i the

others will too in general. Now (2.24) is aslight generalization

of the representation (2.7), and instead of (2.8) we obtain

2w

(2.25) g({An),{An'i), iPi,Pij) 1 1. r f(FP,iFe+P,ijFp,j

0

+ En iFA )de ,

A reinvestigation of theorem 2 shows that its generalization is

still true under the more general representation (2.25), for by

a direct computation we obtain the Euler equations,

(2.26a) M =2A for n - 2,3,...n,i 9 n
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as before and

(2.26b)(. -(4

instead of (2.10b). If the classical approximation were to be

redone here, the result would be (2.21), directly.

Let us define the neoclassical approximation now as the

one-term approximation obtained by retaining only F1 (8;P i) in

(2.24). It has the following properties:

(1) It is the first of a sequence of truncations of a direct

method - if a sequence of solutions of the truncated approxima-

tions converges to a C2 function, the limit is a solution of

(2.6).

(2) It is exact for plane waves.

(3) Its classical approximation (the leading terms of the per-

turbation theory when (2.11) is assumed) is the classical

approximation of the full problem (2.1).

(4) It shows clearly that the classical approximation is

derived from a singular perturbation theory in which higher

derivatives than those retained are neglected, and since it

contains the higher derivatives ab initio it does not have the

self-destructive tendencies of the classical approximation.

Let us put generalities aside now, and resume the discussion

of (1.2). From (2.2) it follows that the plane wave has a

universal waveform regardless of the value of kiki. To see that

this is so let 6 - k xi and f(8) = (ki k i)F(e); then
Sthe

A similar approximation obtained by a perturbation theory has been
reported by Chu and Mei [7].
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(2.27) F 2 + f4 F 34 2 41)
(kik.) 2= jL

follows from (2.2) and (2.4). In this case the anharmonic analysis

of (2.24) can be simplified to

(2.28) f(e,xk) = F(O;A,{An}) = A(x k)F 1 (e)+ Z A n(xk)Fn(8)2

where F1 is the solution of (2.27) (automatically 2w-periodic) and

{F } is complete, orthogonal, odd, and 2w-periodic. The neo-
n

classical approximation is

(2.29) g'¾A2 P 0 (transport equation)

and

(2.30) giJA, = 8gipP PA-cA3  (diffraction-dispersion eq.)

where
27r 21r 27 27rF2lde/fJ deand =a F 2 d/wF de

0 0 0 0

Of course (2.29, 30) is not quite the same as (1.3), but by a

closer examination of (2.27) it can be seen that F1 cannot differ

from (4/3)h sin 6 by more than a few percent, and therefore B 1

and a a 1 . If we set 0=1 and a=(a)hA, (1.3) follows -

for all practical purposes it is the neoclassical approximation of

(1.2). Thus for equation (1.2) in particular it makes little

difference whether we employ the one-term Fourier approximation or

the neoclassical approximation.
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3. And the head of a lion.

Some understanding of how the death-wish of the classical

approximation is mollified in the neoclassical approximation can

be gained by looking at some exact solutions. The class of

solutions we shall discuss stands in relation to (1.3) in precisely

the position of the plane waves relative to (1.2) - they are

solutions that do not vary with time in a coordinate system that

moves with a constant velocity relative to whatever coordinate

system was implied in the writing of (1.2). The major differ-

ences are that the plane waves are periodic and they travel with

phase velocities greater than one while the chimeras are not

necessarily periodic and they travel with group velocities less

than one. Since the Lorentz invariance of (1.2) is perfectly

reflected in (1.3) a chimera can be described in its rest frame

where P 0 (Ew) is a constant (as implied by the integrability

condition P, 0 J - P'j0 = 0) and a, 0 is zero, then set in motion by

a Lorentz transformation. In the rest frame of such a chimera

(3.1) V-(a 2 VVP) = 0

and

(3.2) V2 a+(w 2 -VPi2-a 2 )a = 0

(Note that (x k) - A(X) F(wt+P(x)) is not time independent in any

frame unless it is a plane wave.)
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Plane chimeras

First let us consider the case where a and VP depend on the

single cartesian coordinate x. The integrability conditions

Pxy = Pyx = P zx = 0 imply Py and PZ are constant, the

coordinates can be chosen so that P2 is zero, and the value k

assigned to P provided k < 2. Then

= , ax 2_ 2_2 _ 2
(3.3) Px 2 1 axx + (W k a--a 2 )a = 0

a a

where X is a constant. Equation (3.3) has the energy integral

22(3.4) ½ax+V (a) = c , V (a) W ½(2k2) a2 + --7 T a4

a

and for £Z0 the qualitative structure of the solutions can be

inferred from figure 1.

V (a)

a1 a a

Figure la. V(a)
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0

a

Figure lb. The phase plane.
a

x

ao

x

Figure ic. (C-C ) Solutions.
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Of course there are periodic plane chimeras, more or less like

the cnoidal waves of fluid dynamics, when c lies between L

and c0, but the most interesting one is the one depicted in

figure lc where e = c . By the exquisite balance of diffraction

(as represented by axx) and nonlinear dispersion (as represented

by everything else) the amplitude of a plane wave dips from the

value a0 to a value a and returns across a line inclined at

some angle to the direction of its propagation while the value

of Px increases to an arbitrarily high multiple of its original

value (if L is sufficiently small) and returns, all in the space

of a few wavelengths. As far as can be seen in the classical

approximation where there is no diffraction, the energy E

(proportional to a 4) is constant while the phase P is discontin-

uous. Accordingly, this can be called the description of a

phase-shock if the term plane chimera seems too extravagant.

A simpler, and equally interesting phase-shock is described

by the case where Z=0. Then Px=0,

(35) a2 + V(a) = c , V(a) = (22a2 - 1 a4

and the qualitative structure of the solutions can be inferred

from figure 2.



23

V (a)

a 0 a

Figure 2a. V(a).
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Figure 2b. The phase plane.
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Figure 2c. (c-c ) A solution.
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Again there are periodic plane chimeras when e lies between zero

and c0, and again the most interesting one is the one depicted

in figure 3c where c = cO and the solution connects both hyper-

bolic points in the phase plane. In the classical approximation

the energy E (still proportional to a 4) is constant and the

magnitude of the discontinuity of the phabe is wt

Cylindrical chimeras.

In the cylindrical coordinates (p,O,z) equations (3.1) and

(3.2) imply

(3.6) a = 2 , a + 1 a + (W2_k 2 _P 2 _a 2 )a = 0

in the case where a and P are functions of p alone, P% is zero,

and Pz is the constant k. If a and P are to remain bounded

as p - 0, one of the two has to vanish - the choice Pp = 0 is

the only one that leads anywhere. The second equation (3.6)

doesn't have an energy integral, but the qualitative features of

its solutions can be illustrated by defining

(3.7) (p) 1 2 + V(a) , V(a) - (2 -k 2 )a 2  1 a 4

2 p I

(A Liapunov function - same argot, son. 3f the same applied

mathematicians.) Then by a direct evaluation and the use of the

differential equation, it follows that

( 1 2<0
(3.8) £ (p) --- aP _ 0
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Thus the traces of the solutions of (3.7) and (3.8) in the phase

plane always cross the lines s = constant in such manner that c

decreases as p increases, making a third-order contact at points

where a is zero, as depicted in figure 3.
P

Figure 3a. Same as figure 2a.

a

CME

0

Figure 3b. The phase plane.

a

00

Figure 3c. A solution.
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The solution depicted in figure 3c exhibits an interesting,

absolutely nonlinear phenomenon. By choosing the initial point

where p is zero to be one where a is zero and a is almost but

not quite at the hyperbolic point ao where V'(a) - 0, the

solution can be made to hover in the neighborhood of its initial

value out to an arbitrarily large radius before it finally

spirals into the value a-0 as P approaches infinity. Ultimately

the balance betweexl diffraction and nonlinear dispersion is over-

come by geometrical attenuation, and in two or more space

dimensions the chimeras are fundamentally different from the

one-dimensional varieties - they are localized.

A number of asymptotic properties of the solutions can be

found: As p - -, for example, they behave like Bessel functions

of order zero, i.e. a - a1 (KP)- cos(Kp+o) where K = ( 2-k and

a1 and * are constants that can't easily be evaluated. Another

one that is fairly easy to find out is that as the radius of the

main beam increases, the widths of the first few diffraction rings

decrease relative to it according to the asymptotics, (pl-Po)/Po -

O((tn KP0 )/Kp ) as Kpo0 - D . Thus we have a cylindrical beam of

whatever it is that is radiated by (1.2), of arbitrary radius, of

unchanging shape, surrounded by its diffraction rings, and

propagated forever - a self-focussed beam.

Spherical chimeras.

In the spherical coordinates (r,8,f) the only spherically

symmetric solution of (3.1) that makes sense as r - 0 is the one

where Pr i Pe M P* .0, and thus (3.2) becomes
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1 2 1 2 2 _1 4(3.9) e(r a r1a + w 2a2 a4
r

e' (r) = - 2a2/r.

Since the points in the phase plane where ar=O, a=+w and =w4 /4

are hyperbolic points, there are spherical chimeras within which

a is very nearly equal to +w out to an arbitrary radius ro0

Beyond this there are diffraction rings separated by spherical
4

phase shocks (where a is zero) - the first few are strong ones

with widths of 0(£n wr O) when wr0 >> 1; in the far field they

are weak in accord with the asymptotic behavior, a - a1 cos(wr+O)/wr

as r ÷ , and their widths are of O(ffw). Depending on what it

is that (1.2) was meant to describe, we may wish to compare the

properties of spherical chimeras with those of the transparent

pulses of laser optics, or we may prefer to think of them as

particles. A chimera moving at the velocity V along the xl-axis

can be described in terms of the Lorentz transformation

(3.10) •1 xl-vx° -o x°-VxI -2 2 -3 3
(=_V) (l-V 2 )

k=0= kl-vk° k°0k
-(I 0,o = kl) 0 k , .k 2 =kZ3 =k 3 =0(1-V2) (1-V 2)

where (N) is the rest frame, (xk) is the laboratory. When the

solution is spherically symmetric in the rest frame, the result

(3.11) *(x,t) - A(,(x-vt)2 + y2 +z 2  W (t-Vx))
1-V 2 (1-V
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describes, as expected, a spheriodal wave packet moving with the

group velocity V, made up of not quite sinusoidal waves that

move through it with the phase velocity 1/V.

Other creatures of the neoclassical bestiary.

With the alternate measure of simplicity suggested in

§1, (1.3) is bewilderingly simple. Only the most obvious

chimeras have been described here - there are many others just

waiting to be tamed. Some chimeras lurk in other coordinate

systems and others masquerade as similarity solutions, for

example, and there are numerical chimeras. Equation (1.3), if

it is accepted as describing qualitative features of solutions

of (1.2), is suitable for describing them in the large. In any

region of space and time where a and P i vary relatively slowly

a numerical integration of (1.3) can be allowed to march in

steps that span many wavelengths of the local wave. In an

attempt at the numerical integration of (1.2) under similar

circumstances, the machine prints gibberish that depends as

much on the properties of round-off and truncation errors as

it does on the properties of (1.2).
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4. Breathing flame.

Whatever (1.2) propagates, its neoclassical approximation

has a conservation law, the transport equation

(4.1) g iJ(a2 P i) = 0

that simply wasn't there to begin with. It appears be-.ause (2.6)

depends on P i but not on P, and evidently one like it will be

found in the neoclassical approximation of any nonlinear (or

linear) wave equation that is derived from a stationary principle.

Actually its appearance can be traced all the way back to the

representation (2.5) - the derivation of the bifurcation condi-

tion (2.10b) didn't really depend on the representation (2.7) at

all (just substitute f for F). In terms of the mechanical analog

of the local nonlinear oscillation (4.1) is the generalization

for partial differential equations of what appears as adiabatic

invariance for ordinary differential equations. There is a

temptation to call it conservation of mass, but that would be a

guess, and quite possibly a wrong one. So far the only solution

we have that looks like a particle looks like a free particle,

and not much can be said about its mass until interactions have

been dealt with. Furthermore, if we rewrite (4.1) as

(4.2) (Poui) = 0

where

(4.3) u giijP j/(gkLP kPi)
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is a four-velocity field with the property u u. = 1 and

(4.4) Po = (g k aP,kP,da2

is a scalar field we choose to call rest density, then the rest

mass of spherical chimera

(4.5) mo = 4ri f por 2 dr = 4nw f a 2 r 2 dr

o o

diverges on account of the asymptotic behavior

(4.6) a - a1 cos(wr+O)/wr as r - - .

The divergence of m may or may not be disappointing, but it is

not surprising in view of the fact that there is a relativistic

quantum field theory to be found among the approximations of the

style we have been discussing.

In the previous section we found, in the spherical chimera,

a solution of the neoclassical approximation that has properties

somewhat like those of a relativistic free particle; and at the

same time it is definitely a wave-packet. It would have been

a surprise if the Schrodil.jer equation couldn't be found here.

It can, but to see it we shall have to redo the approximate

treatment of (1.2), practically from the beginning, taking the

similarity of F1 (0) to sin e more seriously than was ever intended.

The only use of that similarity, it may be recalled, was for the

estimation of the values of the coefficients a and 8 in the

diffraction-dispersion equation (2.30), after which it was
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asserted that (1.3) is an adequate approximation. (In other

problems governed by (2.1) the wave form of a plane wave needn't

be well approximated by a sine wave.) Now (1.3) was also

obtained from (1.2) by the use of the one-term Fourier repre-

sentation, F(8;A) = A(x k)sin e , and we know it is not a bad

approximation. Given that, we can complicate the problem by

working with the complex representation

(4.7) F(O;p) = ½(f(xk)eiS+ý*(k)eie)

instead. Then

1 ij" * *

(4.8) Y = P, g [PiP*jl*+IP i ,+i(P 3 j-P0jlil*)- 3.(•*) 2

implies I* is the complex conjugate of *,

(4.9) gl)( PP 4i 1 i( 0_-•,i4)),3
'i2 ,

and

(4.10) g)(• ,ij+i(P,ijp+2P,i.,j)) = (gijP ip - *

- the quantum mechanical approximation. In the rest frame of

any solution that has a rest frame where (P i) = (L,O), P. = 0,l - ,l3

and = 0, it collapses to

2 2_ 3 1ý2)ý
(4.11) V2 1P + (W2 - 3 = T

as expected for a free particle.
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If it had happened that the quantum mechanical approxima-

tion was nothing more than an unnecessary complication of the

neoclassical approximation, applicable in cases where the local

wave form is well approximated by a sine wave - that would have

been a most unkind cut, but that is not the case. Another way

to look at the complex representation (4.7) is to write it as

(4.12) F(O;0) = F(O+x;A) = A(x k)sin(O+x(x k))

where

(4.13) A = 1pý*l½ and tan X = - Re(p)/Im(i)

and the branch of arctangent to be used for the evaluation of

X changes with the addition of ±¶ to X whenever the sign of A,

as determined by the one-term Fourier approximation, changes;

and still another way to write it is to let A = ±i0*I½ and fix

the branch of arctangent once and for all. The representation

(4.12) leads right back to the one-term Fourier approximation,

except that Px k) is to be replaced by p(xk)+x(x k), thus

indicating that P(x k) can be chosen arbitrarily. This can also

be seen by showing directly that (4.9) follows from (4.10) and

its complex conjugate for any P(x k). In particular we may set

(P = (w,O) in any convenient frame to define a fixed-frame

quantum mechanical approximation

(4.14) ktt_v2 ý+ 2iwt = (2

All the information contained in the two real equations of the

one-term Fourier approximation is present in the single complex
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equation (4.14). This may well lead to a simplification,

depending on the type of problem that is to be considered. In

the discussion of solutions that are almost steady in some frame

(the rest frame), for example, we may wish to consider the case

where «~ttj << jw0tj and

(4.15) V2 * + (W2 _ 31*12)* - 2iwlt

Equation (4.15) is not covariant in general; the inequality on

which the approximation is based can be expected only to hold in

some rest frame and in frames that move with uniform velocities

much less than one relative to it. In other words, it is the

non-relativistic approximation of (4.14). Equation (4.14), on

the other hand, can be called covariant or not - the choice is

still open. If we choose to call * a complex scalar field, then
i

we have to replace wt by w in it to arrive at a covariant

formulation. It has been argued, however, that (4.14) can be

written as is in any frame, and if we choose to do so, then *

is not a scalar field, but has the more complicated transforma-

tion law implied by equations (4.12) and (4.13) when A and

wx0 +X are scalar fields.
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